
Streaming of DivX∗ AVI Movies†

Roger Zimmermann
Department of Computer Science
University of Southern California
Los Angeles, California 90089

rzimmerm@usc.edu

ABSTRACT
In recent years the MPEG-4 ISO compression standard has
gained much attention. With its high compression ratio it
promises to make broadband streaming more feasible. How-
ever, currently there are only a limited number of fully ISO
standard compliant MPEG-4 systems widely available (Ap-
ple’s Quicktime 6 is one of the first). Some partial imple-
mentations, such as the MPEG-4 style codec “DivX” are
popular for encoding video content into AVI (Audio Video
Interleave) files. The AVI file format was originally not in-
tended for streaming. In this report we document our efforts
to enable streaming of DivX AVI files across broadband IP
based networks. This will allow the large number of existing
AVI files to be made available in streaming applications.

Categories and Subject Descriptors
E.4 [Data Files]: Organization/Structure; H.3.2 [Informa-
tion Storage]: File organization; H.5.1 [Multimedia In-
formation Systems]: Video

Keywords
Streaming media, DivX, MPEG-4, file formats, AVI, buffer
management

1. INTRODUCTION
Several developments over the last few years have increased

interest in streaming media technologies. Among them are
the following:

• Broadband networking technologies such as ADSL and
Cable modems became available in many metropoli-
tan areas. End-users for the first time had reasonably

†This research has been funded in part by NSF grant IIS-
0082826 unrestricted cash/equipment gifts from Intel and
Metromedia Fiber Networks and by the Integrated Media
Systems Center, a National Science Foundation Engineering
Research Center, Cooperative Agreement No. EEC-9529152.
∗DivX is a trademark of DivXNetworks, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003, Melbourne, Florida, USA
Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

priced access to approximately 256 to 768 kbps, or
sometimes up to 1.5 Mbps, downstream bandwidth.

• Advances in compression technologies have emerged
that allow compressing full-screen NTSC video into a
stream requiring less than 1 Mbps of bandwidth. The
MPEG-4 standard [1] was one of the widely discussed
and publicized techniques.

One of the first implementations of an MPEG-4 style
codec was available from Microsoft. The implementation
did not fully comply with the MPEG-4 standard, however
it demonstrated the very high compression ratio achievable
(more than 300:1). Therefore, it became feasible, for exam-
ple, to store the contents of a DVD (4.7 GB capacity and
compressed with the older, less effective MPEG-2 standard)
on a CD-ROM (650 MB capacity). Originally Microsoft’s
software only allowed decoding of media. However, after
it had been slightly altered, both encoding and decoding
were possible. This altered version became widely known as
“DivX;-)” [2]. The early versions of the DivX codec were
not fully MPEG-4 ISO standard compliant. For example,
originally it did not use the MPEG-4 ISO standard file for-
mat. More recently, that file format has become an option,
but is not yet very popular. Instead the media data is com-
monly stored in the Microsoft AVI (Audio Video Interleave)
file format [3], which is a special case of the Resource Inter-
change File Format (RIFF). Furthermore, most of the DivX
files available on the Internet use MPEG-1 layer 3 audio
encoding (popularly known as MP3) and not the MPEG-4
audio codec.

Several tools became available on the Internet to easily
transcode MPEG-2 encoded media files into DivX AVI files.
One of the more popular tools was FlaskMPEG (go.to/flask-
mpeg) which has since been superseded by XMPEG (www.-
mp3guest.com). These tools allow to easily convert MPEG-2
content into DivX files. For example, one of our 10-minute
demonstration videos with an original file size of 423 MB
in MPEG-2 format resulted in a 63.8 MB-sized DivX file.
Hence, the required playback bandwidth dropped from 5.6
Mbps to 870 kbps (a 6.5:1 reduction).

One of the disadvantages of the AVI file format is that it
was not designed for streaming. AVI and Video for Win-
dows were developed for playback of audio and video from
hard disks and CD-ROMs on personal computers. They are
also adequate for downloading a video file from a remote
site on the Internet for subsequent playback from the com-
puter’s hard drive. They are not well suited for real-time or
streaming video playback over networks.

Microsoft has since defined a new format in the form of the
Active/Advanced Streaming Format (ASF) with improved
support for video over networks. However, the most widely
used version called ASF 1.0 has not been officially docu-
mented. Therefore, not many open source tools and media
players can work with ASF files and its popularity on the
Internet is limited.

In this report we document our efforts in experimenting
with streaming DivX AVI files across broadband IP based
networks. Specifically, we elaborate on the client playback
software that is based on open source tools. The rest of this
report is organized as follows. Section 2 details our design.
Results are presented in Section 3 and we conclude with
Section 4.

2. APPROACH
We have been designing and implementing scalable stream-

ing servers for the past several years [4, 5]. Initially we did
most of our system testing with either MPEG-1 or MPEG-2
streams. When the DivX codec became available we were
interested to try MPEG-4 streaming at lower bit rates that
would be suitable for ADSL or Cable modem connections.
At first, version 3 of the DivX codec was only available in bi-
nary code form for the Windows platform. However, we had
already implemented a Linux MPEG-2 client and wanted to
re-use as much as possible of that software.

While investigating possible solutions we discovered a pro-
ject called avifile for Linux (avifile.sourceforge.net). Its goal
was to provide a runtime environment on Linux that would
allow the execution of Windows codecs which are generally
provided as Dynamic Link Libraries (DLL). To that end, it
uses a specific subset of the libraries from the Wine project
(www.winehq.com). Wine is an implementation of the Win-
dows 3.x and Win32 application programming interface on
top of X11 and Unix. Because Windows codecs have a very
narrow and well-defined interface, only a small subset of the
Wine code — a library to provide a runtime environment
for DLLs — is necessary to successfully execute Windows
codecs.

We found the avifile project intriguing and decided to use
it as the decoding engine within our playback application.
The avifile library included a rudimentary player that was
capable of reading AVI files, decoding their content and ren-
dering the video on the screen and the audio via the sound-
card. We decided to use this player as a starting point for our
own implementation. After successfully testing the playback
of several AVI files with this application we were presented
with the following challenges for our own player:

• The media data from our server would arrive in a mem-
ory buffer while the avifile library was designed to read
data from a file. Hence we had to redirect all file sys-
tem calls to our own buffer manager.

• The AVI file structure is such that a codec not just
reads a file sequentially. On the contrary, it generally
will seek to various locations within the file to gather
information about the media structure before and dur-
ing the playback. For example, an index table labelled
‘idx1’ usually provides the starting point of each frame
within the file. This table is often located at the very
end of an AVI file (see Figure 3). Furthermore, ad-
ditional seeking takes place to multiplex between the
video and audio data that is interleaved within a file.

Movie Length (Size) ‘idx1’ Table Size
“Test1” 2 hours (625 MB) 4800 KB
“Test2” 10 mins (63.8 MB) 349 KB

Table 1: Frame table size and the overall movie size
for two test movies (720×480 resolution at 30 fps).

‘RIFF’ ‘idx1’

‘RIFF’‘idx1’

File Byte
Offsets: 0 (fileSize-1)

frameTbl

(frameTbl-1)

Logical Byte
Offsets: 0(fileSize-1)

frameTbl

(frameTbl-1)

(a) Original AVI File Structure

(b) Reorganized AVI File Structure

Video & Audio Data

Video & Audio Data
Frame Table

Frame Table

0
Physical Byte

Offsets:

(fileSize-1)

Figure 1: File data reorganization from (a) the orig-
inal to (b) a new layout to confine seek operations
to a bounded area.

One of the advantages of streaming as opposed to down-
loading media is that playback will start after a short initial
latency. Therefore, the amount of buffered data is severely
limited and seek operations that span the complete file can-
not be readily supported. A simple solution where every seek
is propagated back to the server side to retrieve the correct
data is not generally feasible because the client-server laten-
cies are not short enough to guarantee a smooth playback.
Hence, we decided to address these challenges in two ways.
First, a simple reorganization of the AVI file prior to placing
it onto the server would ensure that seeks would not exceed
the buffered data. And second, the implementation of a so-
phisticated buffer manager would allow us bounded seeking
capabilities within the playout buffer.

2.1 Data Reorganization
Figure 1 shows the data reorganization that we performed

prior to streaming a movie. The ‘idx1’ frame index table,
which is generally located at the end of an AVI file is moved
to the very beginning. The video and audio data that starts
with a ‘RIFF’ four character signature is appended to the
table. No other changes are made to the contents of the file.
Specifically, no internal pointers are changed to match the
new frame locations. The buffer manager logic is designed to
correctly and transparently translate all access locations. Its
operation is described in the next sections. For streaming,
one disadvantage of moving the frame table to the beginning
of the file is that playback can only start after the complete
table has been received at the client side. However, Table 1
shows that generally the frame table size is less than 1% of
the complete size of a movie and does therefore not introduce
significant startup latencies.

2.2 Buffer Management
The data reorganization described in the previous para-

graph allows the server to stream the AVI file sequentially,
from the beginning to the end. On the client side, sub-

Buffer Structure

fileSize

offsetOfFrameTable

Frame
Table

‘RIFF’zeroOffset

currentSeekOffset

maxSeekOffset

Video & Audio
Data

Figure 2: The client buffer organization after the
start of streaming. The frame table and part of the
frame data has arrived. Two additionally transmit-
ted pointers allow the buffer manager to know every
byte offset in the original file.

sequently care must be taken that the codec accesses the
correct data. Recall that we did not alter any index val-
ues within the AVI file. Therefore, the buffer manager must
correctly translate any file system calls (read and seek) at-
tempted by the codec to the relevant locations in the client
playout buffer.

Figure 2 shows the initial organization of the client buffer
when data starts to arrive. Two number values are trans-
mitted at the very beginning of the data stream: (1) the
file size: fileSize, and (2) the byte offset where the frame
table starts: offsetOfFrameTable. From these two values,
the buffer manager is able to compute additional important
information:

• The frame table size is (fileSize - offsetOfFrameTable).

• The beginning of the frame data (the ‘RIFF’ signature)
starts (fileSize - offsetOfFrameTable) + 2 × sizeof(int)
from the beginning of the buffer.

• Data with file offsets between offsetOfFrameTable . . .
fileSize and 0 . . .maxSeekOffset are available for con-
sumption by the codec.

Based on this information we implemented four functions
to replace the file system calls open(), read(), seek(), and
close() within the avifile library. Each replacement func-
tion has the same set of parameters as its original counter-
part.

• QOpen(): For compatibility reasons this function will
accept a file name. However, the filename is discarded
because data is moved directly from the network into

the memory buffer. The buffer manager is initialized
and the zeroOffset location is set as soon as data starts
to arrive, which is generally before this function is
called.

• QRead(): This function retrieves a specific amount of
data from the current seek position in the buffer. The
currentSeekOffset is then adjusted to reflect the next
unread byte. Error checks ensure that data is not read
beyond the current buffer end. If this condition were
to occur, the function would wait for more data to
arrive and then return. In that case, the buffer sizes
and/or the streaming rate are misconfigured and a dis-
play hiccup would result. Similarly, if data arrives too
fast, i.e., above the decoder consumption rate, then
either the server must be slowed down via a flow con-
trol mechanism, or the system is misconfigured and
the streaming needs to be manually adjusted.

• QSeek(): The seek pointer currentSeekOffset is repo-
sitioned according to the passed parameters. The seek
position is carefully checked against the minimum and
maximum seek values maintained by the buffer man-
ager. Any out-of-range seeking will result in display
disruptions.

• QClose(): Releases the allocated resources and re-
initializes the buffer manager.

2.3 Freeing Data
A significant challenge that arises if the buffer manager

allows seek operations is the following: When can we be
certain that a data item will not be accessed anymore in the
future? With a purely sequential stream format — e.g., an
MPEG-2 program stream — the read pointer in the data
buffer will generally be monotonically advanced and data
behind it can be freed. However, with the AVI file format
seek operations do not guarantee a monotonically increas-
ing read position. Obviously, if read locations are randomly
distributed across the complete file then having a limited
playout buffer will be impossible. Luckily, seek and read op-
erations exhibit a localized behaviour. Figure 3 shows the
trace data we obtained from a 10 minute long DivX AVI
movie. After initially reading the frame table at the very
end of the file, all operations take place within a “sliding
window” of a few megabytes of data. To accommodate this
behaviour we implemented a sliding release pointer in the
following way. A maxReadOffset pointer keeps track of the
furthest seek/read position. This pointer only moves for-
ward, i.e., a seek backwards will leave it unchanged. A free-
Offset pointer is then made to follow at a fixed distance
behind the maxReadOffset, for example by 4 megabytes.
Hence, whenever the maxReadOffset advances, some data
can be freed behind freeOffset. If seek or read operations
take place that do not move the maxReadOffset pointer, no
data will be freed. We experimented with the release dis-
tance and found that most reads and seeks take place within
a 2 MB sliding window. To have a safety margin we doubled
the release distance to 4 MB and this worked well with all
our test movies.

3. RESULTS
We have implemented the buffer manager within the Yima

client playback software [4]. Several DivX clips were used

0

10 MB

20 MB

30 MB

40 MB

50 MB

60 MB

70 MB

0 10,000 20,000 30,000 40,000 50,000

Seek and Read Locations within the File [Bytes]

Seek & Read Accesses Over Time (Approx. 2 Reads + 1 Seek per Frame)

Frame Table

Video and Audio Data

Sliding window of data that
needs to be available to the
client decoder at a given time

First Last

Figure 3: Typical seek and read access pattern for a 10 minute DivX movie encapsulated within an AVI file.
The frame index table is physically located at the end of the file, but it must be read at the start of the
playback. The x-axis enumerates all the seek and read accesses by the codec, while the y-axis shows the
location (data offset) of each access in the file. As can be seen, all accesses target a narrow band of data (a
“sliding window”) while the file is being accessed from the start to the end. Therefore, only the data within
that window needs to be available locally in the client buffer.

for testing. The parameters of two of the movies are listed
in Table 1. Frame table sizes were 4.8 MB and 349 KB for
movies “Test1” respectively “Test2.” Our player was set to
start the movie after receiving the frame table plus 2 MB
of additional data. Recall that 2 MB is the amount of data
that we empirically determined from traces of the movies’
I/O activities to be sufficient for local seeking. Figure 3 il-
lustrates the data that was accessed during the playback of
the 10-minute movie “Test2.” With the described configura-
tion, an initial latency of 70 respectively 25 seconds resulted
before the display started. With our buffer manager con-
figured as described, it was possible to stream all movies
successfully without data overflow or starvation and no seek
or read access occurred outside of the buffered data.

4. CONCLUDING REMARKS & FUTURE
RESEARCH DIRECTIONS

In this report we presented a combination of AVI file re-
organization and sophisticated playout buffer management
that allows commonly unstreamable AVI media files to be
streamed. We have successfully implemented our techniques
in a prototype system and demonstrated its operation across
wide-area networks [5]. With the popularity of MPEG-4, we
expect its official, streamable file format to eventually super-
sede AVI. For example, the MPEG4IP (www.mpeg4ip.net)
project is building on the MPEG-4 file format as is Apple’s
Quicktime 6. However, our buffer management techniques
are still applicable to new file formats, albeit for different
applications. For example, we plan to investigate enabling
pause, resume, and rewind operations with a diskless set-top
box.

5. ACKNOWLEDGEMENTS
We thank Mehrdad Jahangiri and Hong Zhu for helping

with the implementation and testing of the client software.

6. BIOGRAPHY
Roger Zimmermann received his Ph.D. degree in Com-

puter Science from the University of Southern California
(USC), Los Angeles. In 1998 he joined the Integrated Me-
dia Systems Center (IMSC) at USC and in 2000 he became
a Research Assistant Professor with the Computer Science
department of USC. His interests include novel database
architectures, video server technology, and immersive en-
vironments. Some of the main projects that he has been
involved in are Yima, a scalable real-time streaming ar-
chitecture and the Remote Multichannel Immersion (RMI)
platform (http://dmrl.usc.edu).

7. REFERENCES
[1] Moving Pictures Expert Group (MPEG), MPEG-4

(ISO/IEC 14496), URL: http://www.iso.ch.
[2] J. Hibbard, “What the $%@# is DivX;-)?,” Red Herring

Magazine, January 2001.
[3] Microsoft Corporation, Microsoft Press, Redmond, WA,

Microsoft Windows Multimedia Programmer’s Reference.
[4] C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao,

“Yima: A Second Generation of Continuous Media Servers,”
IEEE Computer magazine, vol. 35, no. 6, pp. 56–64, June
2002, URL: http://computer.org.

[5] R. Zimmermann, K. Fu, C. Shahabi, S.-Y. D. Yao, and
H. Zhu, “Yima: Design and Evaluation of a Streaming
Media System for Residential Broadband Services,” in
VLDB 2001 Workshop on Databases in Telecommunications
(DBTel 2001), Rome, Italy, September 2001, pp. 116–125.

